Arabidopsis photorespiratory serine hydroxymethyltransferase activity requires the mitochondrial accumulation of ferredoxin-dependent glutamate synthase.
نویسندگان
چکیده
The dual affinity of ribulose-1,5-bisphosphate carboxylase/oxygenase for O(2) and CO(2) results in the net loss of fixed carbon and energy in a process termed photorespiration. The photorespiratory cycle is complex and occurs in three organelles, chloroplasts, peroxisomes, and mitochondria, which necessitates multiple steps to transport metabolic intermediates. Genetic analysis has identified a number of mutants exhibiting photorespiratory chlorosis at ambient CO(2), including several with defects in mitochondrial serine hydroxymethyltransferase (SHMT) activity. One class of mutants deficient in SHMT1 activity affects SHM1, which encodes the mitochondrial SHMT required for photorespiration. In this work, we describe a second class of SHMT1-deficient mutants defective in a distinct gene, GLU1, which encodes Ferredoxin-dependent Glutamate Synthase (Fd-GOGAT). Fd-GOGAT is a chloroplastic enzyme responsible for the reassimilation of photorespiratory ammonia as well as for primary nitrogen assimilation. We show that Fd-GOGAT is dual targeted to the mitochondria and the chloroplasts. In the mitochondria, Fd-GOGAT interacts physically with SHMT1, and this interaction is necessary for photorespiratory SHMT activity. The requirement of protein-protein interactions and complex formation for photorespiratory SHMT activity demonstrates more complicated regulation of this crucial high flux pathway than anticipated.
منابع مشابه
Impairment of the photorespiratory pathway accelerates photoinhibition of photosystem II by suppression of repair but not acceleration of damage processes in Arabidopsis.
Oxygenation of ribulose-1,5-bisphosphate catalyzed by Rubisco produces glycolate-2-P. The photorespiratory pathway, which consists of photorespiratory carbon and nitrogen cycles, metabolizes glycolate-2-P to the Calvin cycle intermediate glycerate-3-P and is proposed to be important for avoiding photoinhibition of photosystem II (PSII), especially in C3 plants. We show here that mutants of Arab...
متن کاملAmmonia Production and Assimilation in Glutamate Synthase Mutants of Arabidopsis thaliana.
Ammonia production and assimilation(1) were examined in photorespiratory mutants of Arabidopsis thaliana L. lacking ferredoxin-dependent glutamate synthase (Fd-GluS) activity. Although photosynthesis was rapidly inhibited in these mutants in normal air, NH(4) (+) continued to accumulate. The accumulation of NH(4) (+) was also seen after an initial lag of 30 minutes in 2% O(2), 350 microliters p...
متن کامل13C nuclear magnetic resonance detection of interactions of serine hydroxymethyltransferase with C1-tetrahydrofolate synthase and glycine decarboxylase complex activities in Arabidopsis.
In C3 plants, serine synthesis is associated with photorespiratory glycine metabolism involving the tetrahydrofolate (THF)-dependent activities of the glycine decarboxylase complex (GDC) and serine hydroxymethyl transferase (SHMT). Alternatively, THF-dependent serine synthesis can occur via the C1-THF synthase/SHMT pathway. We used 13C nuclear magnetic resonance to examine serine biosynthesis b...
متن کاملPhotorespiratory ammonia does not inhibit photosynthesis in glutamate synthase mutants of Arabidopsis.
Exposure of ferredoxin-dependent glutamate synthase (EC 1.4.7.1) mutants of Arabidopsis thaliana to photorespiratory conditions resulted in the accumulation of NH(4) (+) and the inhibition of photosynthesis. However, upon transfer from 2% O(2), 350 microliters per liter CO(2), to 21% O(2), 350 microliters per liter CO(2), net photosynthesis declined at a slower rate in methionine sulfoximine tr...
متن کاملPhotorespiration-induced reduction of ribulose bisphosphate carboxylase activation level.
Leaf photosynthesis and ribulose bisphosphate carboxylase activation level were inhibited in several mutants of the C(3) crucifer Arabidopsis thaliana which possess lesions in the photorespiratory pathway. This inhibition occurred when leaves were illuminated under a photorespiratory atmosphere (50% O(2), 350 microliters per liter CO(2), balance N(2)), but not in nonphotorespiratory conditions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 21 2 شماره
صفحات -
تاریخ انتشار 2009